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ABSTRACT 

The detection of adulterants in tea using infrared spectroscopy has gained prominence. However, there has yet to be a 
systematic comparison of the performance of traditional machine learning methods versus deep learning in the context of 
modelling infrared data for tea quality. This study compares machine learning and deep learning for modeling spectral 
data. Machine learning methods like Random Forest, K-Nearest Neighbors (KNN), Support Vector Classification, and 
Gaussian Naive Bayes used the Successive Projections Algorithm (SPA) for feature extraction, while deep learning 
models automatically extracted features. SPA-KNN showed superior performance with 0.950 accuracy, 0.953 macro-
precision, 0.950 macro-recall, and 0.950 macro-F1 score on the test set (n=80), processing in 1.33 seconds. Deep 
learning models such as ResNet achieved a lower accuracy of 0.688 and required a longer processing time of 335.60 
seconds. This may be partly due to the limited generalization ability caused by the small sample size. Additionally, the 
complex structure of ResNet, such as its depth, may contribute to the longer processing time. This study offers insights 
for selecting appropriate methods in tea quality assessment. Machine learning methods, especially with spectral 
preprocessing and SPA-based feature extraction, remain effective, while deep learning may not excel in limited data 
scenarios due to its higher computational demands. 
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INTRODUCTION 

 The combination of spectroscopy and machine 
learning algorithms has significantly advanced various 
applications (Chen et al., 2023; Gao et al., 2024a; Qiu et 
al., 2024; Xiao et al., 2024). In the field of food science, 
it effectively facilitates quantitative component analysis 
(Yan et al., 2022; Liao et al., 2024), the detection of 
adulterants (Lin et al., 2025; Liu et al., 2025) and 
pesticide residues (Ye et al., 2022), quality classification 
(Magnus et al., 2021), origin tracing (Zhang et al., 2023), 
and the assessment of fermentation levels (Wu et al., 
2024). In tea testing, the primary spectroscopic 
techniques include in tea quality testing and control 
include infrared (IR) spectroscopy (Bai et al., 2022), 
ultraviolet-visible (UV-Vis) spectroscopy (Wang et al., 
2025), Raman spectroscopy (Li et al., 2023), mass 
spectrometry (Peng et al., 2023), and nuclear magnetic 
resonance (NMR) spectroscopy (Hou et al., 2024). IR 
spectroscopy is rapid, non-destructive, and versatile, yet 
it has low resolution and is sensitive to moisture. UV-Vis 
spectroscopy is sensitive for detecting specific 
components but has a limited range. Raman spectroscopy 
is highly sensitive and selective, though its signal is weak 
and detection speed is slow. Mass spectrometry offers 
precise structural information, but it requires complex 
and costly sample preparation. NMR spectroscopy 
provides non-destructive structural data, but it is 
expensive, slow, and operationally demanding. Overall, 
IR spectroscopy is the most suitable method for mass 
production and quality control due to its speed, non-
destructiveness, and wide application. 
 In recent years, deep learning (Le, 2020; Zhang 
et al., 2021; Luo et al., 2022; Cai et al., 2025; Lin et al., 
2025) has begun to revolutionize mathematical modelling 
based on spectroscopy. Unlike traditional machine 
learning methods, which often rely on handcrafted 
features and linear models, deep learning networks excel 
at automatically extracting relevant features from 
complex data sets. This enables them to capture intricate 
patterns and relationships within the spectral data that 
traditional methods may miss. Infrared spectra arise from 
both linear and non-linear combinations of molecular 
vibrations, including combination bands and overtones. 
Additionally, these spectra can exhibit signals from 
physical effects, such as baseline variations due to light 
scattering, multiplicative influences from pathlength 
discrepancies, and temperature-induced shifts in peak 
positions. Traditional machine learning methods, 
particularly those involving spectra preprocessing (such 
as smoothing, normalization, and baseline correction) and 
feature selection algorithms (such as principal component 
analysis (PCA), successive projections algorithm (SPA) 
and competitive adaptive reweighted sampling (CARS)), 
have effectively modelled near-infrared (NIR) data. 
However, to enhance model performance in addressing 

non-linear data characteristics, non-linear techniques 
have also been employed. That said, non-linear 
approaches, such as those utilizing kernel support vector 
machines, may encounter issues with overfitting, largely 
due to the absence of built-in regularization mechanisms 
(Melssen et al., 1994; Smits et al., 1994; Anderson et al., 
2020). 
 In tea research, both machine learning and deep 
learning (Kamrul et al., 2020; Yang et al., 2021; Hu et 
al., 2025) have achieved significant advancements and 
applications. Issues related to tea adulterants occasionally 
arise in China. Despite the government implementing a 
series of strict food safety regulations, unscrupulous 
merchants still take risks. Prolonged consumption of 
certain adulterants, such as sulphur and talcum powder, 
can lead to kidney burdens and even cancer (Li et al., 
2016). Even seemingly harmless adulterants like white 
sugar can adversely affect diabetic patients. Therefore, 
rapid and effective detection methods for tea adulterants 
are crucial for protecting the rights of legitimate 
manufacturers and consumers. However, research 
applying machine learning or deep learning in 
conjunction with spectroscopy for this purpose is still 
relatively sparse. Amsaraj and Mutturi combined spectral 
data with chemometric analysis to classify and quantify 
multiple adulterants in black tea (Amsaraj and Mutturi, 
2024). Another study used ultra-high performance liquid 
chromatography-tandem mass spectrometry with 
QuEChERS purification to detect 27 pyrrolizidine 
alkaloids in tea (Yao et al., 2024). In the realm of infrared 
(IR) spectroscopy, a study assessed the validity and 
redundancy of spectral data for detecting sucrose-doped 
tea (Liu et al., 2022), while Fourier transform infrared 
(FT-IR) transmission spectroscopy was employed to 
detect talcum powder in green tea (Li et al., 2017). 
Additionally, a rapid method using FT-IR spectroscopy 
and chemometrics was developed to identify sunset 
yellow adulteration in tea powder (Amsaraj and Mutturi, 
2023). These works collectively advance tea adulteration 
detection methods. However, the diversity of adulterants 
is still insufficient, and there is a lack of research on the 
simultaneous adulteration of multiple substances. 
 This paper focuses on tea adulterants as the 
subject of study, employing both machine learning and 
deep learning techniques to develop models for detecting 
seven types of tea adulterants. We will comprehensively 
evaluate and analyse the performance of these models 
from accuracy, speed, computational resources, 
generalization ability and model transparency and 
interpretability. This work not only provides the scientific 
community with guidelines for the application of 
machine learning and deep learning with IR spectroscopy 
but also identifies the most suitable model for detecting 
tea adulterants. This model will facilitate more reliable 
and efficient screening processes, thereby enhancing food 
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safety standards and consumer confidence in tea 
products.  

MATERIALS AND METHODS 

Sample preparation: The experimental materials 
included: Wuyi rock tea obtained from First Class Teas 
Inc. in Wuyishan City, Fujian, China; white sugar 
sourced from Sanlvyuan Food Factory; talcum powder 
from Guilin Guiguang Talc Development Co., Ltd.; food 
coloring (Sunset Yellow) supplied by Dongguan Jinjiahe 
Food Co., Ltd.; paraffin wax from Penglei Chemical 
Division; tea flavoring also provided by Dongguan 
Jinjiahe Food Co., Ltd. All products were securely sealed 
in plastic bags containing a desiccant and stored in a 
laboratory maintained at 25 °C. Due to the legal 
prohibition of these unauthorized adulterants, it is 
difficult to find documented ratios in literature or books, 
so we had to consult some tea manufacturers that have 
previously used these adulterants. Based on their 
experience, the typical ratio of fresh tea leaves to 
adulterants during the tea processing is around 1:50. This 
ratio effectively improves the flavor, appearance, and 
shelf life of the tea. In our study, we chose this ratio to 
ensure the authenticity and representativeness of the 
experimental results. Additionally, similar ratios have 
been used in previous studies on tea extraction and 
analysis, where a 1:50 tea-to-water ratio is often 
employed to prepare tea infusions for the determination 
of various components such as minerals and bioactive 
compounds. For instance, Vuong et al. (2011) 
investigated the optimum conditions for the water 
extraction of L-theanine from green tea and found that a 
tea-to-water ratio of 1:50 (g/ml) at pH <6 yielded the 
maximum extraction efficiency. Similarly, Banerjee and 
Chatterjee (2015) studied the extraction of bioactive 
components from tea and found that a 50:1 water-to-tea 
ratio for 40 minutes to extract polyphenols from black tea 
is more suitable. These studies support the validity of 
using a 1:50 ratio in our research, as it aligns with 
established practices in the field of tea extraction and 
analysis. Accordingly, we prepared seven different types 
of tea samples: tea with sugar, tea with talcum powder, 
tea with sunset yellow, tea with paraffin wax, tea with tea 
flavoring, tea with sugar and paraffin wax, and tea with 
talcum powder, paraffin wax, and tea flavoring.  
 Before the IR spectroscopy experiments, both 
the tea samples containing adulterants and the pure tea 
samples were prepared into 3 mg tea tablets using the 
potassium bromide pellet technique (Ingebrigtson and 
Smith, 1954). Each sample type consisted of 60 tablets, 
resulting in a total of 8 types and 480 tablets (training set: 
400 and test set: 80). Preparation of tablets: Tea and tea 
adulterant samples were first dried in a drying chamber 
(Shangcheng Co., Ltd, China) at 43°C for 2 hours, then 
precisely weighed using a loading balance with an 

accuracy of 0.0001g (Lichen Co., Ltd, China). The tea 
samples were subsequently ground into fine particles and 
sieved through a 100-mesh sieve to ensure uniform 
particle size. For tablet preparation, the potassium 
bromide (KBr) pellet technique was employed. This 
involved mixing the finely ground sample with dried KBr 
powder at a ratio of approximately 2% sample to KBr. 
The mixture was placed into a KBr pellet die and 
compressed under high pressure (10 tons) using a 
hydraulic press for about 2 minutes to form transparent 
and homogeneous pellets. Finally, the quality of the 
formed pellets was carefully inspected to ensure they 
were free from defects and suitable for the intended 
analysis.  

Acquisition of spectra: IR spectral acquisition was 
conducted at a stable temperature of 25 °C utilizing a 
WQF-500 Fourier transform infrared spectrometer 
(Beifen-Ruili Analytical Instrument Co., Ltd., China) 
paired with Main FTOS Suite software. The spectra, 
captured in absorbance mode, spanned from 4500 to 400 
cm−1, comprising 256 scans that produced a total of 4253 
variables. The potassium bromide background was 
subtracted from the sample spectra. For each sample, 
three measurements were performed and subsequently 
averaged for further analysis. 

Spectra preprocessing and evaluation metrics: In this 
study, we aimed to compare the performance of machine 
learning on preprocessed data and deep learning on raw 
data. The raw IR spectra were not subjected to any 
preprocessing, while the preprocessed data underwent 
min-max normalization, baseline correction, standard 
normal variate transformation, Savitzky-Golay 
smoothing, and first and second derivative calculations. 
These preprocessing steps were implemented in Python 
using the Spyder compiler software (Anaconda, Inc., 
USA). To evaluate the models developed, we used 
several metrics, including accuracy, marco-precision, 
marco-recall, and marco-F1 score. These metrics provide 
a comprehensive assessment of the classification 
performance. Accuracy measures the overall proportion 
of correctly classified instances, while precision focuses 
on the correctness of positive predictions. Recall assesses 
the model's ability to identify positive samples, and the 
F1 score, as the harmonic mean of precision and recall, 
offers a balanced evaluation of performance. We chose 
macro-averaged metrics because they treat each class 
equally, which is suitable when all classes are equally 
important and you want to assess model performance 
across them uniformly. This choice allows us to 
thoroughly evaluate our model's effectiveness in 
detecting different types of tea adulterants, ensuring that 
we don't overlook the performance on less frequent but 
potentially significant classes.  
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Algorithm: In our study, we employed four traditional 
machine learning classifiers (Random Forest (RF), K-
Nearest Neighbors (KNN), Support Vector Classifier 
(SVC), and Gaussian Naive Bayes (GNB)) and four deep 
learning algorithms (one-dimensional Convolutional 
Neural Networks (1D CNN), Residual Networks 
(ResNet), MobileNetV3, and Long Short-Term Memory 
(LSTM) networks) for the classification task.  
 RF, another ensemble method using multiple 
decision trees, provides robust performance and handles 
high-dimensional data well, reducing overfitting risk 
through feature and sample randomness. KNN, a simple 
instance-based learning algorithm, offers a non-
parametric approach, useful for small-scale data with 
distinct clusters. SVC, based on support vector machines, 
is powerful for high-dimensional and non-linearly 
separable data by finding optimal hyperplanes with 
kernel tricks. GNB, based on Bayes' theorem with feature 
independence assumptions, is computationally efficient 
and suitable for high-dimensional features, though 
performance drops with correlated features.  
 The deep learning algorithms, including 1D 
CNN, ResNet, MobileNetV3, and LSTM networks, were 
chosen for their unique strengths in processing complex 
data. 1D CNN can capture local patterns and hierarchical 
structures in sequential data, making them well-suited for 
analyzing the complex and high-dimensional nature of IR 
spectroscopy data. ResNet, with its residual connections, 
helps mitigate the vanishing gradient problem in deep 
networks, allowing for the training of deeper models that 
can capture more complex patterns. MobileNetV3 offers 
a good balance between computational efficiency and 
model accuracy, making it suitable for real-world 
applications with limited computational resources. LSTM 
networks are capable of modelling temporal 
dependencies, which is particularly useful if the spectral 
data has a sequential aspect, such as time-series 
measurements. 
 This diverse selection of models allows for a 
comprehensive comparison of performance, strengths, 
and limitations in the context of tea adulteration 
detection. By including both traditional machine learning 
and deep learning approaches, we leverage the benefits of 
interpretability, efficiency, and powerful feature 
extraction. The combination ensures that we can draw 
meaningful conclusions about the most effective 
approaches for detecting tea adulterants, offering 
valuable insights for future research and applications in 
the field. 

RESULTS 

Spectral band assignment: The absorption band in the 
range of 3000 to 2700 cm-1 is linked to C-H stretching 
vibrations from proteins and amino acids. The band 
between 1690 and 1640 cm-1 corresponds to the amide I 

band of proteins, which arises from C=O vibrations of 
polyphenolic compounds. Meanwhile, the band from 
1540 to 1500 cm-1 represents the amide II band, 
associated with the bending vibrations of the peptide 
bond (-CONH-) linked to N-H from polyphenols. 
Furthermore, the spectral region between 1200 and 950 
cm-1 is indicative of polysaccharide components (Fig. 
1a). 
 When various adulterants are introduced, the tea 
samples exhibit altered chemical compositions and 
molecular environments. For instance, paraffin wax, 
which contains alkyl groups, may show absorption bands 
corresponding to the stretching vibrations of hydrocarbon 
bonds (C-H) within the wavenumber range of 3000 to 
2750 cm-1. The presence of wax can also influence the 
vibrational frequencies of the molecules, resulting in 
shifts in the positions of certain absorption bands 
observed between 1750 to 1500 cm-1 and 1200 to 1000 
cm-1. 
 Figure 1b illustrates the spectra of six pure 
adulterants: sugar, talcum powder, food coloring, food 
flavoring, and paraffin. These adulterants exhibit distinct 
spectral characteristics in comparison to pure tea samples. 
Sugar, for example, displays characteristic absorption 
bands due to C-O stretching vibrations in the 1000-1200 
cm-1 region, which are distinct from the broader O-H 
stretching vibrations observed in tea polyphenols and 
polysaccharides. Talcum powder, primarily composed of 
magnesium silicate, shows absorption bands related to Si-
O stretching vibrations around 1000-1100 cm-1 and O-H 
bending vibrations near 1600-1800 cm-1, which are 
different from the amide I and II bands of tea proteins. 
Food coloring and flavoring agents, which often contain 
aromatic structures and functional groups such as 
carbonyls and conjugated double bonds, exhibit specific 
absorptions in the 1600-1800 cm-1 and 3000-3100 cm-1 
regions, features not typically observed in pure tea 
spectra.  

Feature selection: IR spectroscopy typically covers a 
wide range of wavenumbers, some of which are 
irrelevant to the model. Therefore, it is necessary to 
eliminate these interfering wavenumbers and select the 
most relevant ones to improve model accuracy and 
reduce modelling time. This study applies SPA to select 
the most relevant frequencies for the classification model. 
The results show that the SPA identified 41 valid 
characteristic wavenumbers, which are highlighted by 
dashed lines in Figure 2. 

Model comparison: Machine Learning. The KNN model 
adjusts its accuracy by modifying the number of 
neighbors, denoted as n_neighbors, which determines the 
influence of each sample point. Smaller values increase 
model complexity, leading to a higher risk of overfitting, 
while larger values reduce complexity and may result in 
underfitting. The complexity of the SVC model is 
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controlled by the regularization parameter C. Smaller 
values of C simplify the decision boundaries, reducing 

the risk of overfitting, while larger values create more 
complex boundaries, which may cause overfitting.  

 
Figure 1. (a) Mid-infrared spectra of tea with wavenumber identifiers:  = tea + paraffin wax,  = pure tea,  

= tea + white sugar,  = tea + talcum powder,  = tea + food coloring,  = tea + tea flavoring,  = 
tea + talcum powder + paraffin wax + tea flavoring,  = tea + white sugar + paraffin wax; (b) Mid-
infrared spectra of adulterants:  = paraffin wax,  = food coloring,  = talcum powder,  = white 
sugar,  = tea flavoring,  = pure tea. 

 

 
Figure 2. The wavenumbers selected by SPA 

 
The appropriate C value can be selected through cross-
validation. The GNB model uses the smoothing 

parameter var_smoothing, added to the variance to 
prevent zero variance issues. Smaller values increase 
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model complexity, leading to potential overfitting, while 
larger values reduce complexity and may lead to 
underfitting. The RF model is controlled by parameters 
such as the number of trees (n_estimators), maximum 
tree depth (max_depth), minimum samples required to 
split internal nodes (min_samples_split), and the 
maximum number of features to consider when splitting 
(max_features). Increasing the number of trees typically 
improves performance but increases computational cost. 
The optimal number of trees can be determined via cross-
validation. A larger max_depth increases model 
complexity, leading to overfitting, while a smaller 
max_depth limits model expressiveness, potentially 
causing underfitting. Smaller min_samples_split values 
allow for more complex tree structures, which may result 
in overfitting, while larger values reduce complexity. 
Similarly, smaller max_features values limit tree growth, 
helping to avoid overfitting, whereas larger values 

increase complexity and may lead to overfitting. Cross-
validation and grid search were used to determine the 
optimal parameters. 
 The model was tested on 80 samples of pure tea 
and tea with various adulterants. The test dataset consists 
of 10 spectra of pure tea and 70 spectra representing 
various adulterants: white sugar, talcum powder, food 
coloring, paraffin, tea flavoring, white sugar + paraffin, 
and talcum powder + paraffin + tea flavoring. Table 1 
summarizes the model's performance on the test set. As 
shown in Table 1, when sorted by accuracy on the test 
set, the order is SPA-KNN > SPA-RF = SPA-SVC > 
SPA-GNB. Most algorithms experienced a decline in 
accuracy, likely due to differences in data quality and 
distribution between the training and test sets. Among 
them, SPA-KNN achieved the best overall performance, 
with the highest accuracy (0.950).  

Table 1. Comparison of the prediction results of different machine learning models on the training set (n=400) 
and test set (n=80). 

 
Classification 
models 

Cross- 
validation scores 

Accura-cy Macro- 
precision 

Macro-
recall 

Macro- 
F1 

Processing 
time (s) 

SPA-KNN 0.970 ± 0.027 0.950 0.953 0.950 0.950 1.33 
SPA-SVC 0.925 ± 0.034 0.938 0.948 0.938 0.937 1.10 
SPA-GNB 0.880 ± 0.040 0.750 0.775 0.750 0.750 0.39 
SPA-RF 0.980 ± 0.019 0.938 0.950 0.938 0.936 2.98 
Note: Cross-validation scores, Accuracy, Macro-precision, Macro-recall and Macro-F1 data were based on the pre-processed spectral 
data. 
 
 Deep Learning. Increasing the number of 
convolutional kernels in a 1D CNN allows the model to 
extract more features, enhancing its expressiveness and 
data fitting ability. Pooling methods such as max pooling 
or average pooling can downsample the feature map, 
reducing data and computational complexity while 
preserving key feature information. This improves the 
model’s robustness and generalization ability. ResNet 
introduces residual connections to deepen the network, 
mitigate vanishing gradients, and enable learning of 
deeper feature representations, thereby improving model 
accuracy. Adjusting parameters such as the convolution 
kernel size, stride, and padding can also alter the feature 
map's size and receptive field, affecting feature extraction 
and representation capabilities. MobileNetV3 relies 
heavily on depthwise separable convolution, 
decomposing convolution into depthwise and 1×1 
pointwise convolutions. This significantly reduces 
computational load and parameter count while 
maintaining high performance, making the model 
efficient and accurate in resource-constrained 
environments like mobile devices. The addition of the 
Squeeze-and-Excitation (SE) module, an attention 
mechanism, dynamically adjusts the weights of each 
feature map channel to highlight important features and 

suppress less relevant ones, further enhancing feature 
representation and model accuracy. Optimizations to the 
block structure, such as removing shortcut connections in 
certain cases, reduce computational overhead without 
compromising accuracy. Additionally, modifying 
expensive layers at the network's beginning and end, such 
as reducing the number of kernels in the first 
convolutional layer and simplifying the last stage, 
reduces model delay and computation while maintaining 
good accuracy. LSTM can improve sequence data 
prediction and classification accuracy by increasing the 
number of hidden units, allowing the model to learn more 
features and complex sequence patterns. Tuning the 
forgetting gate parameters, such as the weight matrix and 
bias terms, helps the model better retain important 
information and discard irrelevant data, optimizing its 
ability to capture long-term dependencies. The choice of 
activation functions, such as sigmoid and tanh, plays a 
crucial role in information processing. Selecting or 
adjusting the activation function based on the specific 
task and data characteristics can further improve model 
performance. Proper data preprocessing, such as 
normalization and standardization, helps achieve a more 
uniform data distribution, facilitating faster convergence 
and higher accuracy. Additionally, optimizing the 



Liu et al.,  J. Anim. Plant Sci., 35 (4) 2025 

 896 

sequence length ensures the model retains sufficient 
information without making training more difficult due to 
overly long sequences. 
 Table 2 shows the performance of four deep 
learning models on raw data. Sort the test set in order of 
accuracy, ResNet > LSTM > MobileNetV3 > 1D CNN. 
Among them, ResNet has the best comprehensive 
performance and the highest accuracy (0.688), but the 
processing time is long (335.6 s), which is suitable for 

scenes with high classification accuracy requirements. 
LSTM has acceptable performance in cross-validation 
scores, accuracy, accuracy, recall and F1 scores, and has 
the shortest processing time (11.67 s), which is suitable 
for scenes that require both time and classification effect. 
1D CNN has a relatively poor performance in various 
indicators, so it may need to further optimize the model 
structure or adjust the hyperparameters. Some processing 
of the data will make these models perform better.  

Table 2. Comparison of the prediction results of different deep learning models on the training set (n=400) and 
test set (n=80). 

 
Classification 
models 

Cross- 
validation scores 

Accura-cy Macro- 
precision 

Macro-
recall 

Macro- 
F1 

Processing 
time (s) 

1D-CNN 0.619 ± 0.073 0.513 0.523 0.518 0.520 383.95 
LSTM 0.835 ± 0.091 0.600 0.563 0.563 0.563 11.67 
MobileNetV3 0.348 ± 0.183 0.580 0.563 0.563 0.563 39.32 
ResNet 0.558 ± 0.096 0.688 0.683 0.688 0.685 335.60 
Note: Cross-validation scores, Accuracy, Macro-precision, Macro-recall and Macro-F1 data were based on were based on the raw 
spectra. 
 

DISCUSSION 

 The results of this study demonstrate the 
effectiveness of combining mid-infrared (MIR) 
spectroscopy with both machine learning and deep 
learning algorithms for the detection of tea adulterants. 
Among the tested models, the SPA-KNN model achieved 
the highest prediction accuracy (0.950), macro-precision 
(0.953), macro-recall (0.950), and macro-F1 score 
(0.950), with a processing time of 1.33 seconds. This 
indicates that SPA-KNN is the most effective model 
among those tested for this specific application. Among 
the deep learning models, ResNet achieved the highest 
accuracy (0.688), macro-precision (0.683), macro-recall 
(0.688), and macro-F1 score (0.832), albeit with a long 
processing time of 335.60 seconds. Recently, Yang et al. 
(2021) combined diffuse reflection MIR spectroscopy 
with chemometrics to quickly identify adulteration in 
Radix Astragali, using the KNN classification method, 
achieving 100% prediction accuracy. Both this and 
previous studies demonstrate that KNN, a non-parametric 
method based on locality-based classification, is 
particularly well-suited for handling IR spectral data with 
complex, unknown distributions and similar spectral 
characteristics. 
 When trained on large and diverse datasets, deep 
learning models tend to generalize better (Gao et al., 
2024b, c). They can automatically extract relevant 
features from the data, making them highly flexible and 
effective for complex tasks like NIR spectroscopy. 
However, if the dataset is too small, as in our current 
study, or if the models are not properly regularized, 
overfitting can become a significant issue. In contrast, 
traditional machine learning models may perform better 

on smaller datasets, especially when feature engineering 
is effectively applied. Yet, they often struggle with the 
complexity of high-dimensional data. The generalization 
gap between training and testing performance is typically 
more pronounced in deep learning models, but this gap 
can be reduced through techniques such as dropout, batch 
normalization, and data augmentation.  
 Deep learning models are often seen as "black-
boxes" due to their lack of transparency. Their decision-
making processes are hard to trace because features are 
abstract and spread across layers. Traditional machine 
learning models like decision trees and linear regression 
are more interpretable, with simpler, visualizable decision 
processes (e.g., tree paths or linear weights). While deep 
learning may perform better, its transparency is lower, 
making it harder to understand decisions or debug. In our 
machine learning study, using SPA for feature selection 
helps identify features linked to specific adulterants, 
offering insights into tea adulteration. SPA focuses on 
peak regions, stepwise selecting the features most 
strongly correlated with the adulterant target (Esteki et 
al., 2016), and extracts features by calculating the area 
under the peak in the spectrum, aiding in the accurate 
analysis and identification of adulterants. For example, as 
shown in Figure 1b, paraffin, which is composed of long 
alkane chains, exhibits prominent C-H stretching 
absorptions in the range of 2800-3000 cm-1 and C-C 
stretching absorptions around 700-900 cm-1. These 
absorption features contrast with the more complex and 
varied patterns observed in the components of tea (Al-
Mokhalelati et al., 2023). These distinct spectral 
differences facilitate the identification and differentiation 
of various adulterants in tea samples using infrared 
spectroscopy. Likewise, Sun et al. (2019) proposed using 
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SPA combined with stepwise regression to select 
characteristic wavelengths, which effectively improved 
the correlation coefficient of the prediction set in the 
established multiple linear regression model.  
 Previous studies have used machine learning and 
IR spectroscopy to examine tea adulterants. For instance, 
Amsaraj and Mutturi (2023) reported the quantification 
of sunset yellow in tea powder using a random forest 
based on FT-IR, achieving high R² and RMSE values. 
Another study (Li et al., 2017) utilized FT-IR 
transmission spectroscopy for the detection of talcum 
powder in green tea, demonstrating the effectiveness of 
FT-IR techniques in identifying specific adulterants. Our 
study advances the field by offering a broader detection 
scope of tea adulterants and the ability to detect multiple 
adulterants simultaneously. Unlike previous studies that 
focused on specific adulterants, our approach can identify 
a wider range of contaminants. 

Conclusions: The MIR spectroscopy combined with 
deep learning and machine learning had potential for 
differentiating tea adulterated with various adulterants, 
which could be particularly useful in regulatory 
enforcement and industry quality control settings. Among 
the tested classification models, the SPA-KNN model 
delivered the most comprehensive test-set results, 
achieving a prediction accuracy of 0.950, macro-
precision of 0.953, macro-recall of 0.950, macro-F1 score 
of 0.950, and a detection time of 1.33 s. Moreover, the 
selected features can help identify adulterant types.  
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